Алгоритъмът на Крускал

В този урок ще научите как работи алгоритъмът на Крускал. Също така ще намерите работни примери за алгоритъма на Крускал в C, C ++, Java и Python.

Алгоритъмът на Крускал е минимален обхващащ дърво алгоритъм, който взема графика като вход и намира подмножеството от ръбовете на тази графика, която

  • образуват дърво, което включва всеки връх
  • има минималната сума от тегла между всички дървета, които могат да се формират от графиката

Как работи алгоритъмът на Крускал

Той попада в клас алгоритми, наречени алчни алгоритми, които намират локалния оптимум с надеждата да намерят глобален оптимум.

Започваме от ръбовете с най-ниско тегло и продължаваме да добавяме ръбове, докато достигнем целта си.

Стъпките за внедряване на алгоритъма на Kruskal са както следва:

  1. Сортирайте всички ръбове от ниско тегло до високо
  2. Вземете ръба с най-малко тегло и го добавете към дървото, което се простира. Ако добавянето на ръба създаде цикъл, отхвърлете този ръб.
  3. Продължавайте да добавяте ръбове, докато достигнем всички върхове.

Пример за алгоритъма на Крускал

Започнете с претеглена графика Изберете ръба с най-малко тегло, ако има повече от 1, изберете всеки Изберете следващия най-кратък ръб и го добавете Изберете следващия най-кратък ръб, който не създава цикъл и го добавете Изберете следващия най-кратък ръб това не създава цикъл и го добавя. Повторете, докато имате обхващащо дърво

Крускалски алгоритъм Псевдокод

Всеки алгоритъм за минимално обхващащо дърво се върти около проверка дали добавянето на ръб създава цикъл или не.

Най-често срещаният начин да разберете това е алгоритъм, наречен Union FInd. Алгоритъмът Union-Find разделя върховете на клъстери и ни позволява да проверим дали два върха принадлежат към един и същ клъстер или не и следователно да решим дали добавянето на ръб създава цикъл.

 KRUSKAL(G): A = ∅ For each vertex v ∈ G.V: MAKE-SET(v) For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v): if FIND-SET(u) ≠ FIND-SET(v): A = A ∪ ((u, v)) UNION(u, v) return A

Примери за Python, Java и C / C ++

Python Java C C ++
 # Kruskal's algorithm in Python class Graph: def __init__(self, vertices): self.V = vertices self.graph = () def add_edge(self, u, v, w): self.graph.append((u, v, w)) # Search function def find(self, parent, i): if parent(i) == i: return i return self.find(parent, parent(i)) def apply_union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank(xroot) rank(yroot): parent(yroot) = xroot else: parent(yroot) = xroot rank(xroot) += 1 # Applying Kruskal algorithm def kruskal_algo(self): result = () i, e = 0, 0 self.graph = sorted(self.graph, key=lambda item: item(2)) parent = () rank = () for node in range(self.V): parent.append(node) rank.append(0) while e < self.V - 1: u, v, w = self.graph(i) i = i + 1 x = self.find(parent, u) y = self.find(parent, v) if x != y: e = e + 1 result.append((u, v, w)) self.apply_union(parent, rank, x, y) for u, v, weight in result: print("%d - %d: %d" % (u, v, weight)) g = Graph(6) g.add_edge(0, 1, 4) g.add_edge(0, 2, 4) g.add_edge(1, 2, 2) g.add_edge(1, 0, 4) g.add_edge(2, 0, 4) g.add_edge(2, 1, 2) g.add_edge(2, 3, 3) g.add_edge(2, 5, 2) g.add_edge(2, 4, 4) g.add_edge(3, 2, 3) g.add_edge(3, 4, 3) g.add_edge(4, 2, 4) g.add_edge(4, 3, 3) g.add_edge(5, 2, 2) g.add_edge(5, 4, 3) g.kruskal_algo()
 // Kruskal's algorithm in Java import java.util.*; class Graph ( class Edge implements Comparable ( int src, dest, weight; public int compareTo(Edge compareEdge) ( return this.weight - compareEdge.weight; ) ); // Union class subset ( int parent, rank; ); int vertices, edges; Edge edge(); // Graph creation Graph(int v, int e) ( vertices = v; edges = e; edge = new Edge(edges); for (int i = 0; i < e; ++i) edge(i) = new Edge(); ) int find(subset subsets(), int i) ( if (subsets(i).parent != i) subsets(i).parent = find(subsets, subsets(i).parent); return subsets(i).parent; ) void Union(subset subsets(), int x, int y) ( int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets(xroot).rank subsets(yroot).rank) subsets(yroot).parent = xroot; else ( subsets(yroot).parent = xroot; subsets(xroot).rank++; ) ) // Applying Krushkal Algorithm void KruskalAlgo() ( Edge result() = new Edge(vertices); int e = 0; int i = 0; for (i = 0; i < vertices; ++i) result(i) = new Edge(); // Sorting the edges Arrays.sort(edge); subset subsets() = new subset(vertices); for (i = 0; i < vertices; ++i) subsets(i) = new subset(); for (int v = 0; v < vertices; ++v) ( subsets(v).parent = v; subsets(v).rank = 0; ) i = 0; while (e < vertices - 1) ( Edge next_edge = new Edge(); next_edge = edge(i++); int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) ( result(e++) = next_edge; Union(subsets, x, y); ) ) for (i = 0; i < e; ++i) System.out.println(result(i).src + " - " + result(i).dest + ": " + result(i).weight); ) public static void main(String() args) ( int vertices = 6; // Number of vertices int edges = 8; // Number of edges Graph G = new Graph(vertices, edges); G.edge(0).src = 0; G.edge(0).dest = 1; G.edge(0).weight = 4; G.edge(1).src = 0; G.edge(1).dest = 2; G.edge(1).weight = 4; G.edge(2).src = 1; G.edge(2).dest = 2; G.edge(2).weight = 2; G.edge(3).src = 2; G.edge(3).dest = 3; G.edge(3).weight = 3; G.edge(4).src = 2; G.edge(4).dest = 5; G.edge(4).weight = 2; G.edge(5).src = 2; G.edge(5).dest = 4; G.edge(5).weight = 4; G.edge(6).src = 3; G.edge(6).dest = 4; G.edge(6).weight = 3; G.edge(7).src = 5; G.edge(7).dest = 4; G.edge(7).weight = 3; G.KruskalAlgo(); ) )
 // Kruskal's algorithm in C #include #define MAX 30 typedef struct edge ( int u, v, w; ) edge; typedef struct edge_list ( edge data(MAX); int n; ) edge_list; edge_list elist; int Graph(MAX)(MAX), n; edge_list spanlist; void kruskalAlgo(); int find(int belongs(), int vertexno); void applyUnion(int belongs(), int c1, int c2); void sort(); void print(); // Applying Krushkal Algo void kruskalAlgo() ( int belongs(MAX), i, j, cno1, cno2; elist.n = 0; for (i = 1; i < n; i++) for (j = 0; j < i; j++) ( if (Graph(i)(j) != 0) ( elist.data(elist.n).u = i; elist.data(elist.n).v = j; elist.data(elist.n).w = Graph(i)(j); elist.n++; ) ) sort(); for (i = 0; i < n; i++) belongs(i) = i; spanlist.n = 0; for (i = 0; i < elist.n; i++) ( cno1 = find(belongs, elist.data(i).u); cno2 = find(belongs, elist.data(i).v); if (cno1 != cno2) ( spanlist.data(spanlist.n) = elist.data(i); spanlist.n = spanlist.n + 1; applyUnion(belongs, cno1, cno2); ) ) ) int find(int belongs(), int vertexno) ( return (belongs(vertexno)); ) void applyUnion(int belongs(), int c1, int c2) ( int i; for (i = 0; i < n; i++) if (belongs(i) == c2) belongs(i) = c1; ) // Sorting algo void sort() ( int i, j; edge temp; for (i = 1; i < elist.n; i++) for (j = 0; j elist.data(j + 1).w) ( temp = elist.data(j); elist.data(j) = elist.data(j + 1); elist.data(j + 1) = temp; ) ) // Printing the result void print() ( int i, cost = 0; for (i = 0; i < spanlist.n; i++) ( printf("%d - %d : %d", spanlist.data(i).u, spanlist.data(i).v, spanlist.data(i).w); cost = cost + spanlist.data(i).w; ) printf("Spanning tree cost: %d", cost); ) int main() ( int i, j, total_cost; n = 6; Graph(0)(0) = 0; Graph(0)(1) = 4; Graph(0)(2) = 4; Graph(0)(3) = 0; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 4; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 0; Graph(1)(6) = 0; Graph(2)(0) = 4; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 3; Graph(2)(4) = 4; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 0; Graph(3)(1) = 0; Graph(3)(2) = 3; Graph(3)(3) = 0; Graph(3)(4) = 3; Graph(3)(5) = 0; Graph(3)(6) = 0; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 4; Graph(4)(3) = 3; Graph(4)(4) = 0; Graph(4)(5) = 0; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 0; Graph(5)(2) = 2; Graph(5)(3) = 0; Graph(5)(4) = 3; Graph(5)(5) = 0; Graph(5)(6) = 0; kruskalAlgo(); print(); )
 // Kruskal's algorithm in C++ #include #include #include using namespace std; #define edge pair class Graph ( private: vector 
 G; // graph vector 
 T; // mst int *parent; int V; // number of vertices/nodes in graph public: Graph(int V); void AddWeightedEdge(int u, int v, int w); int find_set(int i); void union_set(int u, int v); void kruskal(); void print(); ); Graph::Graph(int V) ( parent = new int(V); //i 0 1 2 3 4 5 //parent(i) 0 1 2 3 4 5 for (int i = 0; i < V; i++) parent(i) = i; G.clear(); T.clear(); ) void Graph::AddWeightedEdge(int u, int v, int w) ( G.push_back(make_pair(w, edge(u, v))); ) int Graph::find_set(int i) ( // If i is the parent of itself if (i == parent(i)) return i; else // Else if i is not the parent of itself // Then i is not the representative of his set, // so we recursively call Find on its parent return find_set(parent(i)); ) void Graph::union_set(int u, int v) ( parent(u) = parent(v); ) void Graph::kruskal() ( int i, uRep, vRep; sort(G.begin(), G.end()); // increasing weight for (i = 0; i < G.size(); i++) ( uRep = find_set(G(i).second.first); vRep = find_set(G(i).second.second); if (uRep != vRep) ( T.push_back(G(i)); // add to tree union_set(uRep, vRep); ) ) ) void Graph::print() ( cout << "Edge :" << " Weight" << endl; for (int i = 0; i < T.size(); i++) ( cout << T(i).second.first << " - " << T(i).second.second << " : " << T(i).first; cout << endl; ) ) int main() ( Graph g(6); g.AddWeightedEdge(0, 1, 4); g.AddWeightedEdge(0, 2, 4); g.AddWeightedEdge(1, 2, 2); g.AddWeightedEdge(1, 0, 4); g.AddWeightedEdge(2, 0, 4); g.AddWeightedEdge(2, 1, 2); g.AddWeightedEdge(2, 3, 3); g.AddWeightedEdge(2, 5, 2); g.AddWeightedEdge(2, 4, 4); g.AddWeightedEdge(3, 2, 3); g.AddWeightedEdge(3, 4, 3); g.AddWeightedEdge(4, 2, 4); g.AddWeightedEdge(4, 3, 3); g.AddWeightedEdge(5, 2, 2); g.AddWeightedEdge(5, 4, 3); g.kruskal(); g.print(); return 0; )  

Алгоритъмът на Крускал срещу Прим

Алгоритъмът на Prim е друг популярен алгоритъм за минимално обхващащо дърво, който използва различна логика за намиране на MST на графика. Вместо да започне от ръб, алгоритъмът на Prim започва от връх и продължава да добавя ръбове с най-ниско тегло, които не са в дървото, докато всички върхове бъдат покрити.

Сложността на алгоритъма на Крускал

Сложността във времето на алгоритъма на Крускал е: O (E log E).

Приложения на алгоритъма на Крускал

  • За да се подреди електрическото окабеляване
  • В компютърна мрежа (LAN връзка)

Интересни статии...